7 research outputs found

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    DAI-DEPUR: an integrated supervisory multi-level architecture for wastewater treatment plants

    No full text
    DAI-DEPUR: una arquitectura integrada multi-nivell de supervisio per a plantes de tractament d'aigues residualsCentro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de Informaciòn y Documentaciòn CientìficaSIGLEESSpai

    Which method to use? An assessment of data mining methods in Environmental Data Science

    Get PDF
    Data Mining (DM) is a fundamental component of the Data Science process. Over recent years a huge library of DM algorithms has been developed to tackle a variety of problems in fields such as medical imaging and traffic analysis. Many DM techniques are far more flexible than more classical numerial simulation or statistical modelling approaches. These could be usefully applied to data-rich environmental problems. Certain techniques such as artificial neural networks, clustering, case-based reasoning or Bayesian networks have been applied in environmental modelling, while other methods, like support vector machines among others, have yet to be taken up on a wide scale. There is greater scope for many lesser known techniques to be applied in environmental research, with the potential to contribute to addressing some of the current open environmental challenges. However, selecting the best DM technique for a given environmental problem is not a simple decision, and there is a lack of guidelines and criteria that helps the data scientist and environmental scientists to ensure effective knowledge extraction from data. This paper provides a broad introduction to the use of DM in Data Science processes for environmental researchers. Data Science contains three main steps (pre-processing, data mining and post-processing). This paper provides a conceptualization of Environmental Systems and a conceptualization of DM methods, which are in the core step of the Data Science process. These two elements define a conceptual framework that is on the basis of a new methodology proposed for relating the characteristics of a given environmental problem with a family of Data Mining methods. The paper provides a general overview and guidelines of DM techniques to a non-expert user, who can decide with this support which is the more suitable technique to solve their problem at hand. The decision is related to the bidimensional relationship between the type of environmental system and the type of DM method. An illustrative two way table containing references for each pair Environmental System-Data Mining method is presented and discussed. Some examples of how the proposed methodology is used to support DM method selection are also presented, and challenges and future trends are identified
    corecore